Trending AI Technologies

1 Mar
2023

 
6585 Views
 

Artificial intelligence (AI) plays a transformative role in developing the economy and society of the future. The application of AI has become essential to the digitization process as there will likely be a massive increase in the number of innovative applications for artificial intelligence (AI) in the workplace. To improve the operations and customer service, many businesses have already begun implementing AI-driven solutions for daily activities.

The rise in demand for AI-based systems to enhance efficiency and productivity is propelling the growth of the artificial intelligence market, along with technological advancements in the AI industry such as natural language processing, faster speech, and text-to-image, which are positively impacting the growth of the AI market.

AI has provided the foundation for numerous pioneering advancements and inventions. The utilization of AI is not restricted to a specific field but is found in everything from a small detail to a ground-breaking invention. Numerous tools and technologies have been designed, creating a new world, leading to a promising future.

With the growing demand for information efficiency, business digitalization, improved industry 4.0 chain structures, and globalization, the development of AI is accelerating. AI has left its mark everywhere and has shown immense potential to make lives much easier. The effectiveness and popularity of AI-powered chat bots in recent years have also catapulted an increased interest in how artificial intelligence is deployed to increase efficiency and productivity.

Top 4 Upcoming Technologies that will disrupt Artificial Intelligence in future:

Language Model for Dialog Applications (LaMDA):

LaMDA is a conversational AI model that carries a natural-sounding conversation based on its ability to understand and respond to conversational cues such as tone, sentiment, and context. This allows to provide more natural and personalized responses, which can help improve the overall user experience. LaMDA models can also be customized to specific domains or topics, which enables to provide more specialized and accurate responses.

LaMDA has also been trained on a massive amount of conversational data along with handling complex and nuanced conversations providing human-like responses to a wide range of queries. LaMDA can be applied to a wide range of conversational applications, including chatbots, voice assistants, and customer service systems.

  • For instance: A user might ask the Google Assistant to find a nearby restaurant. The LaMDA model can understand the user's intent, identify the user's location, and provide a list of nearby restaurants along with relevant information such as ratings, reviews, and menus.
  • In 2022, Google launched LaMDA 2, which is an advanced conversional AI version of LaMDA which was introduced in 2021. The company will release LaMDA 2 to small groups of people in batches for testing the app and will work on feedback to improve before making it available to the general public.

Pathways Language Model (PaLM):

The Pathways Language Model PaLM is a language model that is pre-trained on a large corpus of text data. It uses a novel training technique that incorporates both masked language modeling (MLM) and auxiliary learning, which enables the model to capture both syntactic and semantic features of language.

PaLM enables a single AI system to generalize over thousands or millions of tasks, analyze different types of data with surprising efficiency and progress society from the era of single-purpose models that only recognize patterns, toward a future in which more general-purpose intelligent systems reflect a deeper understanding of the environment and can adapt to new requirements. It is achieved by using a new algorithm that allows the model to dynamically adjust the level of detail and coherence in its output, depending on the needs of the task.

Like any other large language model, PaLM performs better as it scales up and can simultaneously interpret several types of data, including text, images, and speech. The PaLM model has shown promising results in a variety of natural language processing tasks, including question-answering, summarization, and conversation generation. It is also being used to develop more advanced natural language processing systems, such as virtual assistants and chatbots, that can engage in more sophisticated and natural conversations with users.

  • In April 2022, Google AI introduced the Pathways Language Model (PaLM) a 540-billion parameter, dense decoder-only Transformer. The company is leading the AI race with the release of Pathways Language Model (PaLM) against the rising popularity of ChatGPT.
  • Google Research and Everyday Robots are working together to combine the language models with robot learning called PaLM-SayCan as a joint venture. This effort is the first execution that uses a large-scale language model to plan for a real robot. It not only makes it possible for people to communicate with helper robots via text or speech, but also improves the robot’s overall performance and ability to execute more complicated and conceptual tasks by tapping into the experience encoded in the language model.

Imagen:

There has been a lot of development in the text-to-image field over the last few years. Imagen is a text-to-picture diffusion model that relies on the influence of large transformer language models for text understanding and on diffusion models for high-fidelity image production to achieve an unprecedented level of photorealism and language understanding. Though conceptually straightforward and simple to train, Imagen produces surprisingly effective results. It also demonstrates the usefulness of frozen big pretrained language models as text encoders for diffusion model-based text-to-image generation.

The goal of Imagen is to advance generative techniques research by employing text-to-image synthesis as a test case. We acknowledge the possible downstream uses of this study are diverse and may have a significant impact on society, even though end-user applications of generative approaches are still mainly outside of reach. Generative models have the ability to greatly enhance, extend, and complement human creativity. Particularly text-to-image generating models have the potential to expand the possibilities of picture editing and result in the creation of new tools for creative professionals.

More so than expanding the size of the image diffusion model, Imagen improves sample reliability and picture-text alignment. A text encoder converts text into a series of embeddings, and a series of conditional diffusion models convert those embeddings into images with higher resolutions. Imagen demonstrates the usefulness of frozen big pretrained language models as text encoders for diffusion model-based text-to-image generation.

  • Google is being extremely vigilant with the release of its AI system which helps to convert text-to-image. Although the company’s Imagen model produces output equal in quality to OpenAI’s DALL-E, DALL-E 2 or Stability AI’s Stable Diffusion, Google hasn’t made the system available to the public and will only be available to handle extremely limited requests in Google’s AI Test Kitchen app which was launched in 2022.
  • In 2022, OpenAI launched DALL·E beta which is available without a waitlist, where over 1.5 million users can create more than 2 million images per day. Developers integrated DALL·E directly into their apps and products through the API generating over 4 million images a day.
  • Microsoft is also incorporating DALL·E in Bing and Microsoft Edge with Image Creator, allowing users to generate images if web results can’t find what they’re looking for.

MusicLM:

MusicLM is a model that creates high-fidelity music from text descriptions, forms the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. MusicLM can be conditioned on both a melody and text where it can transform hummed melodies and whistled according to the style described in a text caption. To support future research, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts is public released by the name MusicCaps.

MusicLM determines a new level of composition and high fidelity in songs produced by computers. The development of MusicLM is a part of a wave of deep-learning AI applications created with the aim of imitating human mental capacities, and several other efforts to create song generation applications, including Jukebox, Dance Diffusion, and Riffusion.

Music Language Modelling (MusicLM) is the musical equivalent of language modelling in Natural Language Processing (NLP). By modelling the language of music, and specifically its temporal, melodic, rhythmic, and harmonic structure as well as emergent patterns and repeated passages, it can not only further understand but also create better representations and abstractions. MusicLM allows to predict more realistic transcriptions, improve transcription accuracy, and increase the confidence of the model predictions.

Conclusion:

With so much growth on the horizon, with rapidly changing, and digitizing world, businesses are deploying AI-powered tools, and solutions which will have a competitive advantage over competitors. As new emerging AI technologies continues to gain traction across various industries, the above models are expected to play a crucial role in enabling more natural and engaging conversations between humans and machines, creating text-to-music and text-to-images.

The use of new technologies not only offers exciting new opportunities but it also constantly presents us with challenges, such as the development and use of these models also raise ethical and social concerns that need to be carefully considered and addressed to ensure that they are used responsibly and for the greater good.

However, the technology is evolving gradually, and it has the potential to be more conversant than ever. While there is no assured way of predicting the future of AI, it will certainly continue benefitting various businesses, and end-users in their day-to-day lives.

 
Koyel Ghosh

Koyel Ghosh

Author’s Bio- Koyel Ghosh is a blogger with a strong passion and enjoys writing in miscellaneous domains, as she believes it lets her explore a wide variety of niches. She has an innate interest in creativity and enjoys experimenting with different writing styles. A writer who never stops imagining, she has been serving the corporate industry for the last five years.

 
PREVIOUS POST
 

Mobile Wallet Market- A Cashless facility making Big Cash!

NEXT POST
 

Rise in Adoption of Quality Bluetooth Technology Services and Wireless Technology is Expected to Grow the Bluetooth 5.0 Industry

 
 

Avenue: Entire Library membership of Allied Market Research Reports at your disposal

  • Avenue is an innovative subscription-based online report database.
  • Avail an online access to the entire library of syndicated reports on more than 2,000 niche industries and company profiles on more than 12,000 firms across 11 domains.
  • A cost-effective model tailored for entrepreneurs, investors, and students & researchers at universities.
  • Request customizations, suggest new reports, and avail analyst support as per your requirements.
  • Get an access to the library of reports at any time from any device and anywhere.

 

Related Post